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with most occurring in boreal and hemi-boreal regions. Forest generalists
accounted for nearly half the total (1.57 billion males), followed by boreal
specialists (1.05 billion), habitat generalists (350 million), and species asso-
ciated with eastern forests (274 million), grasslands (124 million), western
forests (74.7 million), wetlands (63.5 million), and Arctic tundra (17.7 million).
Introduced species totaled 48.9 million breeding males. Across species,
landscape-level vegetation composition explained most variation in abundance,
indicating that climate effects are primarily indirect, operating through vegeta-
tion. Landscape-scale variables were critical to capturing this variation. Model
classification accuracy was highest for forest- and grassland-associated species
(lowest for mountain and urban species), and for the families Regulidae and
Phasianidae (lowest for Bombycillidae and Paridae). This work provides a stan-
dardized, updatable, and reproducible workflow for generating spatially explicit
bird abundance estimates. These products can be revised as new data become

KEYWORDS

INTRODUCTION

Human activities are causing rapid changes in the abun-
dance and distribution of many species, creating a high
degree of uncertainty around management decisions and
long-term conservation planning (Polasky et al., 2011).
Many countries have set ambitious conservation targets
designed to reduce or prevent biodiversity loss, as
outlined by the Kunming-Montreal Global Biodiversity
Framework (GBF, https://www.cbd.int/gbf). To achieve
these targets, certain key information needs have been
identified (Buxton et al., 2021). Among these are esti-
mates of species’ population sizes and distributions at a
range of extents, from local to continental. Predictive spe-
cies density and distribution maps play an important role
in conservation and land-use planning (e.g., Eken et al,,
2004; Leston et al., 2020; Stralberg et al., 2018), in priority
species identification (e.g., Carter et al., 2000), and in spe-
cies recovery planning (e.g., Foin et al., 1998; Leston
et al.,, 2024). However, a primary scientific challenge is
generating these estimates at a spatial extent large
enough to address national priorities and at a resolution
high enough to support regional land-use and resource
management planning (Carroll et al., 2022).
Abundance-based species distribution models (SDMs)
(Waldock et al., 2022) offer an obvious pathway to creat-
ing spatially explicit population estimates across broad
extents. SDMs have been used extensively to predict the
spatial distribution of species at a range of scales (Elith &

available and used to support ongoing conservation and land-use decisions.

avian density and distribution, boosted regression trees, boreal birds, data integration,
species abundance models

Leathwick, 2009; Engler et al.,, 2017), typically using
probability of occurrence as the response variable. While
there is a strong link between regional occupancy (occur-
rence extent) and abundance (Zuckerberg et al., 2009),
the relationship can vary substantially among species,
population sizes, and spatial extents of sampling and
analysis (Freckleton et al., 2005). Therefore, occurrence
may not always be a reliable surrogate for abundance
(Johnston et al., 2015), especially when estimated from
spatially aggregated data (e.g., counts along routes and
transects rather than at point locations). Furthermore,
distributions of occurrence may remain relatively stable
during periods of population decline (Johnston et al.,
2015; Waldock et al., 2022).

Abundance-based SDMs have significant advantages
over probability of occurrence models for conservation
planning (Veloz et al., 2015), including the ability to esti-
mate population sizes (Callaghan et al., 2021; Rosenberg
et al., 2019; Woodward et al., 2020); yet they have gener-
ally seen little use. Broad implementation of abundance-
based SDMs is hindered by a number of challenges, espe-
cially in remote and sparsely sampled regions within
heterogeneous biomes, where extrapolation may be inap-
propriate. In this paper, we identify five major chal-
lenges, present a generalized framework for overcoming
them, and offer directions for future progress. To meet
the needs of ecologists, managers, and policy-makers, we
maintain that a generalized abundance modeling frame-
work should: (1) integrate disparate data sources and
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survey methods to maximize the amount of information
incorporated into spatial predictions (Miller et al., 2019;
Pacifici et al., 2017; Sélymos et al., 2020); (2) provide reli-
able estimates at spatial extents and resolutions relevant
to conservation planning and management decision-
making (Van Wilgenburg et al., 2020); (3) be reproducible
and easily updated, with a system for quickly incorporat-
ing new data and regenerating outputs (Barros et al.,
2023; McIntire et al., 2022); and (4) be open-source
(Barros et al., 2023) so that the methods and results can
be critically evaluated and easily applied to new contexts.
We use our framework to generate spatially explicit den-
sity predictions and population estimates for landbirds—
that is, bird species associated with terrestrial habitats—
across the subarctic Canada, with the intent that models
and predictions be regularly updated. However, our
framework is applicable to other taxa such as waterfowl
(Adde et al., 2020, 2021; Barker et al., 2014) and to
regions where extensive, coordinated monitoring pro-
grams do not exist (Moussy et al., 2022).

CHALLENGES AND
OPPORTUNITIES

Developing a generalized abundance modeling frame-
work poses several challenges, especially in remote
and sparsely sampled regions. Here, we discuss recent
advancements in statistics, computing, and remote
sensing that have presented opportunities to overcome
these challenges.

Challenge 1: Data availability

The expansion of community science programs (e.g.,
Cadman et al., 2007; Sauer et al., 2017; Sullivan et al.,
2014) combined with an increase in open data platforms
has led to a rapidly increasing volume of data available
for modeling species abundance, occurrence, and distri-
bution (La Sorte et al., 2018; Milanesi et al., 2020). In
addition, technological improvements have made the use
of tools for remote data collection like camera traps
(Burton et al., 2015; Gilbert et al., 2021) and autonomous
recording units (hereafter ARU; Gibb et al, 2019;
Shonfield & Bayne, 2017; Sugai et al., 2019) increasingly
affordable.

Despite increasing data availability, biases persist in
spatial coverage, survey effort, and species reporting
(Johnston et al., 2021), affecting the accuracy and preci-
sion of abundance and distribution estimates (Hughes
et al., 2021; Sélymos et al., 2020; Van Wilgenburg et al.,
2020). Within Canada, many of these sampling biases are

associated with the road network. The road-based breed-
ing bird survey (BBS, Sauer et al., 2017), for example, has
limited coverage in many remote areas of the boreal
forest (Machtans et al., 2014), overrepresenting upland
versus wetland habitats (Van Wilgenburg et al., 2020),
and underrepresenting naturally disturbed areas (Van
Wilgenburg et al.,, 2015). In addition to habitat biases
associated with the road network, data from roadless
areas are important because roads directly affect the dis-
tributions of many bird species (Pankratz et al., 2017,
Sélymos et al., 2020). Further, roadless areas may sustain
important, landscape-level ecological processes, thereby
supporting healthier populations in comparison with
more degraded landscapes (Betts et al., 2022; Venier
et al., 2014; Watson et al., 2018).

Even relatively well-studied taxa like birds suffer from
the biases enumerated above. There is therefore a need to
harmonize and integrate data from multiple data sources
(Miller et al., 2019). Most landbird studies use point-
count surveys (Ralph et al., 1993), a method that involves
having a trained observer stand at a location and record
all the birds that are detected during a set amount of time
within a fixed or unlimited distance away from the count
station; specific protocols differ depending on study
objectives (Matsuoka et al., 2014). Given biases and gaps
in existing continental-scale monitoring programs such
as BBS and provincial breeding bird atlas programs, data
from localized studies may be used to fill gaps in coverage
and create more accurate national-level population esti-
mates (Sélymos et al., 2020). To this end, the Boreal
Avian Modeling (BAM) project, a partnership among uni-
versity, government, private, and nonprofit organizations,
compiled avian point count data from multiple moni-
toring programs and independent studies across sub-
arctic Canada (and the northern United States) into a
single repository with a common data structure
(Barker et al., 2015; Cumming et al., 2010; partners and
data providers listed at https://borealbirds.ca/about-
us/partners-sponsors/). The BAM project was initiated
to develop predictive models of the distribution of
avian populations and to improve understanding of the
environmental drivers of boreal birds (Cumming
et al., 2010). The database has since been expanded to
include analogous ARU data processed by expert
human listeners via the WildTrax platform (Alberta
Biodiversity Monitoring Institute, 2022).

Challenge 2: Heterogeneity in data
collection protocols

When creating a harmonized database, variability in
survey protocols among projects makes detectability
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adjustments for density estimation challenging (Matsuoka
et al., 2014). Differences among datasets in survey proto-
cols (sampling radius and count duration) and conditions
(time of day, day of year, land-cover type) lead to differ-
ences in detection rates. The key components of avian
detectability are considered to be availability (p), the prob-
ability that an individual bird present at the time of the
survey was available for detection, either through visual or
auditory cues; and perceptibility (q), the conditional proba-
bility that available birds were detected. By estimating
p and g via removal models and distance sampling, respec-
tively, Solymos et al. (2013) developed the so-called QPAD
approach to estimate survey-level statistical offsets for den-
sity (d) as a function of p, g, and survey area (a). When
including these offsets in abundance models, predictions
are produced in common units (i.e., in number of singing
males per hectare) that can be summed across prediction
areas to produce regional population estimates.

The advent of ARUs and camera traps provides the
opportunity to apply similarly standardized methods to a
much larger group of taxa (Cameron et al., 2020; Garland
et al,, 2020; Wearn & Glover-Kapfer, 2019). As with
point-count and ARU data, camera traps provide
the opportunity to create precalculated offsets based
on site-specific survey conditions (Becker et al., 2022).
Increasingly, methods are being developed to integrate
information from multiple datasets by combining estima-
tors for different data types while accommodating stren-
gths and weaknesses of each (Miller et al., 2019; Pacifici
et al., 2017, 2019).

Challenge 3: Complex population responses
to environmental factors

Species distribution and abundance are determined by a
complex suite of ecological processes interacting across
multiple scales of space and time (Johnson, 1980; Mayor
et al., 2009; Wiens, 1989). Quantifying the relationship
between species distributions and environmental factors
is complicated by considerations such as differing scales
of effects (Crosby et al., 2023; Wiens, 1989), nonlinear
responses, spatial variation in population-limiting factors
(Austin, 2007; Elith et al., 2010), and cross-scale interac-
tions among variables (Schooley & Branch, 2007).
Dealing with this complexity using generalized linear
models (sensu Ball et al., 2016; Sélymos et al., 2020;
Westwood et al., 2019) can be time consuming and
difficult to apply across species and regions. A machine
learning approach utilizing boosted regression trees
(BRT, Elith et al., 2008) can overcome these hurdles
because it is an ensemble approach, where multiple
regression trees are fit sequentially so that each tree

focuses on capturing the unexplained variability from the
previous trees (Elith et al., 2008). The major advantages
of BRT models are that they can accept large numbers of
variables, automatically handle interactions, and fit com-
plex nonlinear relationships (De’ath, 2007). BRTs can
reliably identify important predictor variables, safeguard
against extreme overprediction (a common shortcoming
of parametric models), and exhibit better predictive per-
formance than many traditional modeling methods (Elith
et al., 2008). This BRT approach, combined with QPAD
offsets, has been used to develop bioclimatic models and
predict bird distribution and abundance responses to cli-
mate change (Micheletti et al, 2021; Raymundo
et al., 2024; Stralberg, Matsuoka, et al., 2015).

Challenge 4: Temporally variable landscape
conditions

Another aspect of spatially explicit abundance modeling
with temporally heterogeneous data is that landscape
change can be rapid and widespread, especially in
regions prone to extensive disturbance processes like fire
and insect outbreaks (Brandt et al., 2013; Venier et al.,
2014). The primary challenge in such a context is accu-
rately linking sampling data to relevant predictor vari-
ables. The development of remotely sensed time-series
data giving consistent estimates of environmental condi-
tions across large spatio-temporal extents has helped to
alleviate this issue (e.g., Beaudoin et al., 2014, 2017).
With increased computer storage and processing capacity
(Gorelick et al., 2017), high-resolution (30-m), LANDSAT-
based vegetation data products have since become more
readily available at sub-decadal time intervals and over
large spatial extents (e.g., Guindon et al., 2024; Hermosilla
et al., 2022; White et al., 2022).

Challenge 5: Differential habitat selection

A major and often unrecognized difficulty in modeling
species distributions across large spatial extents is that a
single species can display high variability in habitat rela-
tionships across its geographic range (i.e., differential
habitat selection). Crosby et al. (2019) showed that regio-
nally specific models for six migratory bird species in
Canada had little predictive ability in other regions, and
that failure to account for that regional variability
strongly affected estimates of density and distribution.
Differential habitat relationships could result from
genetic differences among sub-populations, variation in
biotic interactions, or changing habitat preferences with
availability (Jankowski et al.,, 2010; Matthiopoulos
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et al., 2015; Peterson & Holt, 2003). It may also stem from
inadequate nuance in the environmental variables that
drive species abundance patterns (e.g., seasonal climate
extremes vs. annual means). To account for differential
habitat selection among regions, models may be devel-
oped for separate, overlapping geographic units, and then
combined for mapping and population estimation pur-
poses (sensu Fink et al., 2010). Hierarchical modeling
approaches can also be used to address the different spa-
tial scales at which environmental predictors operate
(Mateo et al., 2024).

METHODS

Our generalized modeling framework is illustrated con-
ceptually in Figure 1. We integrated avian point-count
data from research and monitoring projects conducted
between 1991 and 2018 across subarctic Canada
(~296,000 surveys). Using regional subsamples and
applying detectability offsets, we developed 32 boosted
regression trees per region to model the density of
143 boreal landbird species as a function of 216 environ-
mental covariates representing climate, local- and
landscape-level vegetation composition, land cover,

1991-2018 QPAD V3* detectability
landbird survey data offsets
~296,000 surveys

143 species _» for survey methodology

32x *

Stratified Regional
subsample

216 Environmental Predictors

* 92 vegetation (local + landscape)
e 21 climate-normal

* 5local terrain

¢ 3land-use

A

’

Regression Trees
; Species count ~
24 Environmental Predictors
+ year + survey type +
road + offset

ﬁ Regional Boosted
~:‘
r

Regional filtering for
correlated/invariant
predictors

topography, and survey year. Average model predictions
for each region were then combined to generate predic-
tive density maps, habitat- and region-specific density
estimates, and Canada-wide population estimates. We
also evaluated variable importance by predictor category
and evaluated model performance by taxonomic group,
habitat, and region.

Study area

Our study area was the subarctic portion of Canada
(Figure 2), which represents large spatial gradients of
climate, landforms, soils, and land-use patterns. The
boreal biome is predominant, covering approximately
552 million ha of the ~1 billion ha considered (Brandt
et al., 2013). Northern boundaries were determined by
mapped bird conservation regions (BCRs; Bird Studies
Canada & NABCI, 2014). In our study area, where
national survey grids are lacking, bird population esti-
mates are primarily based on roadside counts from the
North American Breeding Bird Survey (BBS, Sauer
et al., 2017). The reliance of the BBS on roadside sur-
veys means large parts of northern Canada and Alaska
lack sufficient survey effort for reliable regional-scale

VEE] [
importance

Evaluate model
performance
by taxonomic group,
habitat, and region

Model

" Species population
Evaluation

estimates

s
Predict regional
density (1-km Mosaic
resolution) sub-

regions
b
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Region-wide

density maps
(32 output mean)
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FIGURE 1 Flowchart overview of generalized modeling framework for spatially extensive species abundance prediction and
population estimation. Green boxes indicate data inputs; light yellow indicates data filtering or compiling; dark yellow indicates model
building; gray indicates model processing; blue indicates final products. Illustration credit: Sarah Nason.
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FIGURE 2 Canadian subarctic study area showing model-building regions based on a combination of bird conservation regions (BCRs)
and Canadian provincial boundaries (Bird Studies Canada and NABCI, 2014). BCRs included were 4 (Northwestern Interior Forest),

5 (Northern Pacific Rainforest), 6 (Boreal/Taiga Plains), 7 (Taiga Shield and Hudson Plain), 8 (Boreal Softwood Shield), 9 (Great Basin),

10 (Northern Rockies), 11 (Prairie Potholes), 12 (Boreal Hardwood Transition), 13 (Lower Great Lakes/St. Lawrence Plain), and 14 (Atlantic
Northern Forests). Hyphenated regions represent BCRs that were split for modeling purposes.

population estimates (Van Wilgenburg et al., 2020).
Several initiatives have developed broad-scale sampling
designs for these northern regions (e.g., Cadman
et al., 2007; Handel et al., 2021; Van Wilgenburg et al.,
2020), but large areas remain un-surveyed. Efforts to
analyze and predict spatio-temporal density patterns at
national and continental scales have therefore relied
on ad hoc data assemblages. Reliable spatial prediction
from ad hoc data is challenged by several factors
(Cumming et al., 2010; S6lymos et al., 2013), leading to
the need for application-specific data integration
methods and frameworks (Fletcher et al., 2019; Isaac
et al., 2020; Pacifici et al., 2017).

Avian data and subsampling

We extracted avian point-count data within our study
area from version 4.0 of the BAM database, which is
focused on forested regions of Canada. We supplemented
this point-count database with BBS and Breeding Bird
Atlas (BBA) data, as well as ARU data from the WildTrax
database (Alberta Biodiversity Monitoring Institute,
2022). Point counts in our database were conducted

between 1991 and 2018, with 97% done between 1997
and 2014. The database used for modeling included
256,316 sampling locations across 175 different projects,
and a total of 296,061 point counts (Sélymos et al., 2025).
ARU, BBS, and BBA data constituted 2.3%, 30%, and 53%
of point counts, respectively.

The data were not evenly distributed either spatially
or temporally, with most samples and environmental rep-
resentation coming from the southern portion of the
study area (Figure 3). To account for this spatial and tem-
poral imbalance in our analysis, we stratified samples by
geography and year, using a 2.5km X 2.5km grid to
define spatial clusters of data. We then created subsam-
ples of the data by randomly selecting a single point
count from each cluster in each year (130,424 grid
cell X year combinations). This subsampling routine
ensured that the data would not include multiple surveys
from a single location in the same year.

We subdivided point-count locations into 16 BCR
X province units (Figure 2; hereafter regions). Very small
regions were merged as needed to maintain areas of ade-
quate size for modeling (i.e., as an a priori GIS exercise).
We developed species abundance models for the 143
landbird species for which we were able to calculate
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FIGURE 3 Sample point density (in number of sites surveyed per 20-km pixel). Black lines represent Bird Conservation regions in

North America and provincial and territorial boundaries in Canada.

detectability offsets (sensu Soélymos et al., 2013; see
https://doi.org/10.5281/zenodo.14854040; Sélymos et al.,
2025). Species with insufficient point-count data for offset
estimation (detected on <25 point counts; Sélymos et al.,
2018) included nocturnal and crepuscular species such as
owls and nightjars, which are generally not well detected
with morning point-count surveys, as well as species
associated primarily with aquatic rather than terrestrial
habitats (e.g., waterfowl).

Environmental covariates

We assessed the influence of environmental conditions
on avian density by spatio-temporally matching environ-
mental variables (Table 1) to point counts. To account for
differing landscape conditions among years, we used con-
sistently derived vegetation data from 2001 and 2011
(Beaudoin et al., 2014, 2017). Vegetation variables were
derived at a 250-m spatial resolution from k-nearest
neighbor (kNN) models that were derived from forest
sample plots from Canada’s National Forest Inventory
combined with MODIS satellite imagery, climate, and
terrain data (Beaudoin et al., 2014, 2017). We matched
survey data to the vegetation data closest to the survey
year, so that surveys conducted in 2005 or earlier were
associated with the 2001 dataset, while surveys from 2006

and later were associated with the 2011 dataset. Our veg-
etation variables included pixel-level (250-m scale) and
landscape-level biomass of individual tree species
and stand age. We calculated landscape-level variables
based on a moving-window average over the Beaudoin
et al. (2017) data, using a Gaussian weighting of sur-
rounding pixels with the focal() function from the raster
package (Hijmans & van Etten, 2014) in program R
v. 3.4.3 (R Core Development Team, 2017), with a SD of
750 m (i.e., 68% of values within a 750-m radius; 95% of
values within a 1.5-km radius).

To capture other sources of environmental variation
not represented in vegetation data, we used terrain,
land-use, and climate-normal variables (i.e., 30-year
climate means) (Table 1). Terrain metrics, calculated
using the terrain() function in the raster package for
program R, were based on a 100-m digital elevation
model for North America obtained from the AdaptWest
project (https://adaptwest.databasin.org; Michalak et al.,
2015). Elevation was derived from SRTM v4.1 data below
60° N, and ASTER GDEM v2 data above 60° N. Land-use
and land-cover variables were based on the 2005
MODIS-based 250-m North American land-cover map
(Commission for Environmental Cooperation, 2013).
We used a binary indicator of road presence within
1 km of the point derived from global human footprint
maps (Venter et al., 2016) to account for the influence
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TABLE 1 List of candidate variables included in boosted regression tree models of bird abundance, grouped by variable class.

Variable class
Time
Survey method
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Climate
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation

Vegetation

Variable

Year of survey

ARU (1) or human point count (0)

Annual heat: moisture

Beginning of the frost free period

Climatic moisture deficit
Degree days (<0)

Degree days (<18)

Degree days (>18)

Degree days (>5)

End of the frost-free period

Extreme minimum temperature

Extreme maximum temperature

Frost-free period

Mean annual precipitation
Mean annual temperature
Mean cold month temperature

Mean summer precipitation

Mean warm month temperature

Number of frost-free days
Summer precipitation
Winter precipitation
Summer heat: moisture
Average summer temperature
Average winter temperature
Temperature difference
Abies amabalis biomass
Abies balsamea biomass
Abies lasiocarpa biomass
Abies spp. biomass

Acer macrocarpa biomass
Acer negundo biomass

Acer pensylvanicum biomass
Acer rubrum biomass

Acer saccharum biomass
Acer saccharinum biomass
Acer spicatum biomass

Acer spp. biomass

Alnus rubra biomass

Alnus spp. biomass

Arbutus mengziesii biomass
Betula alleghaniensis biomass

Betula papyrifera biomass

Resolution
N/A
N/A
1km
1 km
1km
1 km
1 km
1 km
1km
1 km
1km
1 km
1 km
1 km
1km
1 km
1km
1 km
1 km
1 km
1 km
1km
1km
1 km
1 km
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m

Reference

N/A

N/A

Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Wang et al. (2016)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
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TABLE 1 (Continued)

Variable class
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation

Vegetation

Variable
Betula populifolia biomass
Betula spp. biomass
Carpinus caroliniana biomass

Carya cordiformis biomass

Chamaecyparis nootkatensis biomass

Fagus grandifolia biomass
Fraxinus americana biomass
Fraxinus nigra biomass
Fraxinus pennsylvanica biomass
Generic broadleaf spp. biomass
Generic needleleaf spp. biomass
Juglans cinerea biomass
Juglans nigra biomass
Juniperus virginiana biomass
Larix laricina biomass

Larix lyallii biomass

Larix occidentalis biomass
Larix spp. biomass

Malus spp. biomass

Ostrya virginiana biomass
Picea abies biomass

Picea engelmannii biomass
Picea glauca biomass

Picea mariana biomass

Picea rubra biomass

Picea sitchensis biomass

Picea spp. biomass

Pinus albicaulis biomass

Pinus banksiana biomass
Pinus contorta biomass

Pinus monticola biomass
Pinus ponderosa biomass
Pinus resinosa biomass

Pinus spp. biomass

Pinus strobus biomass

Pinus sylvestris biomass
Populus balsamifera biomass
Populus grandidentata biomass
Populus spp. biomass

Populus tremuloides biomass
Populus tridentata biomass

Abies amabalis biomass

Resolution
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m

Reference
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)

(Continues)
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TABLE 1 (Continued)

Variable class
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Vegetation
Land cover
Land cover
Land cover
Land cover
Land cover
Land cover
Land cover
Land cover
Topography
Topography
Topography

Variable
Pseudotsuga mengiesii biomass
Prunus serotina biomass
Quercus alba biomass
Quercus macrocarpa biomass
Quercus rubra biomass
Quercus spp. biomass
Salix spp. biomass
Sorbus americana biomass
Thuja occidentalis biomass
Thuja plicata biomass
Tilia americana biomass
Tsuga canadensis biomass
Tsuga heterophylla biomass
Tsuga mertensiana biomass
Tsuga spp. biomass
Ulmus americana biomass
Broadleaf biomass
Needleleaf biomass
Unknown biomass
Branch biomass (t/ha)
Foliage biomass (t/ha)
Stem bark biomass (t/ha)
Stem wood biomass (t/ha)
Total dead biomass (t/ha)
Total live aboveground biomass (t/ha)
Stand age (m)
Crown closure (%)
Stand height (m)
Merchantable volume (m®/ha)
Total volume (m>/ha)
% nonvegetated
% vegetated
% nontreed vegetation
% treed vegetation
Road (yes/no)
2005 development % (landscape)
2005 open water % (landscape)
2005 Land-cover class
Terrain position index
Terrain ruggedness index

Slope

Resolution
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
250 m
1km
250 m
250 m
250 m
100 m
100 m
100 m

Reference
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Beaudoin et al. (2017)
Venter et al. (2016)
CEC (2013)

CEC (2013)
CEC (2013)
Michalak et al. (2015)
Michalak et al. (2015)
Michalak et al. (2015)
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TABLE 1 (Continued)

Variable class Variable

Topography Roughness index

Topography Landform class

Resolution Reference
100 m Michalak et al. (2015)
100 m Michalak et al. (2015)

Note: Vegetation biomass variable units are (tons/ha) X 100. Vegetation variables were developed at both the local and landscape levels, for a total of 178
vegetation variables (79 x 2). Landscape-level vegetation variables were based on a Gaussian weighting of surrounding pixels, with a SD of 750 m (i.e., 68% of

values within a 750-m radius; 95% of values within a 1.5-km radius).
Abbreviations: ARU, autonomous recording units; N/A, not applicable.

of roads at a Ilandscape level. Climate-normal
variables were based on 30-year mean conditions from
1981 to 2010 weather station data interpolated to a
1-km®  resolution  (https://adaptwest.databasin.org;
Wang et al., 2016). In all, we considered 216 variables:
92 vegetation variables (at the pixel and landscape
levels); 21 climate-normal variables; 5 local terrain
variables; 3 land-use variables; survey year; roads; and
survey type (human point count or ARU-based count).
Prior to modeling, we screened the environmental pre-
dictor variables to eliminate constant (no variation
within a region, usually due to zero values) or highly
correlated (Pearson’s correlation >0.9) variables to
improve processing time.

Model development

We estimated species density (in number of singing males
per hectare) by fitting BRT models to the point-count and
environmental predictor data, using statistical offsets to
account for detectability differences caused by heteroge-
neity in survey protocols and environmental conditions
(QPAD, sensu Sdlymos et al., 2013). In this approach:

E[Y]=A=DAp(t;)q(rx),

where E[Y] = is the expected count of a species during
a survey, D is point-level species density, A is area sam-
pled, p(t;) is the probability of an individual singing dur-
ing the cumulative time interval f;, given presence
(availability), and gq(rk) is the probability of an individual
being detected, given singing, within point count radius
rk (detectability) (Sélymos et al., 2013). Thus, “QPAD”
refers to different elements (g, p, A, D) of the expected
count model, which can be modified according to differ-
ent methodological, temporal, and environmental
covariates present during a survey. The approach esti-
mates a correction factor (C=Apq) for heterogeneous
count data, so that D=)\/C. In our implementation,
C was calculated using time-removal models to estimate
p (Sélymos et al., 2018) and distance sampling models to
estimate g (Buckland et al., 2001), as described in

Sélymos (2016) and Sélymos et al. (2013). For point
counts that used a limited radius protocol (3% of dataset,
e.g., a 150-m radius), A was defined as the area of a circle
with the specified radius. For point counts that used an
unlimited radius protocol (97% of dataset), A was set to
the effective detection radius (EDR) derived from the half
normal parameter of the distance sampling model. EDR
is the distance from an observer where the number of
individuals missed within equals the number of individ-
uals detected beyond, and therefore allows q to be set to 1
(Buckland et al., 2009). C was then specified as a statisti-
cal offset (o=1og(C)) when modeling count data:
log(\) = log(D) + o, where density D =singing males per
hectare. We used the Poisson likelihood as the loss func-
tion for count outcomes in the boosted regression trees.

In calculating offsets, we identified the best model,
considering the effects of time of day (time since local
sunrise) and day of year (ordinal day and days since start
of local spring) on the probability of availability given
presence, and the effects of tree cover (Hansen et al.,
2003) and land-cover class (CEC, 2013) on the probability
of detection given availability (S6lymos, 2016). Using
these offsets, we then modeled D in a BRT framework as
a function of multiple covariates relating to species
density. We assumed that ARU detectability is similar
to detectability by human observers (Yip et al., 2017).
Nevertheless, we used an indicator variable to account
for possible differences in effective area sampled between
human counts and ARUs following Van Wilgenburg
et al. (2017).

We built separate BRT models for each region
(BCR X province), including overlapping 100-km buffers
(within Canada only, due to the limited extent of the
Beaudoin et al. (2017) vegetation data) to reduce the
influence of arbitrary regional boundaries. We chose to
use predefined model regions rather than systematic
moving windows (e.g., Fink et al., 2010) primarily
because it represents a modular approach that may be
easily updated with the best available regional datasets.
Moving windows were also difficult to implement given
the regional variation in amounts of point count data.

We conducted the modeling as a two-step process. In
the first step, we fit a 10-fold cross-validated BRT model
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to a single subsample from the regional dataset using the
gbm.step() function from the dismo package (Hijmans
et al., 2020) in program R. The purpose of this initial step
was to establish the optimal number of trees without
overfitting the model and to eliminate uninformative var-
iables. We capped the number of trees at 10,000 and used
a learning rate of 0.001, bag fraction of 0.5, and interac-
tion depth of 3, as recommended by Elith et al. (2008)
and consistent with Micheletti et al. (2021) and Stralberg,
Matsuoka, et al. (2015). In the second step, we fit BRT
models to 32 bootstrapped subsamples (the number of
processors available) of the regional data using the maxi-
mum number of trees and the subset of variables deter-
mined from the first step. Post hoc analysis indicated that
the bootstrap SE for most species (73% of species X region
combinations) converged to a 95% asymptote before
32 replicates (mean = 26; Appendix S1: Figure S1). Code
and data for ongoing model development are available,
with frequent updates, at https://github.com/borealbirds/
LandbirdModelsV5.

Model evaluation

We calculated validation metrics by making predictions
from each of the 32 bootstrap-based BRT models for each
region. Variation across bootstrapped predictions was
evaluated by the overall concordance correlation coeffi-
cient (OCCC; Barnhart et al., 2002; Lin, 1989). OCCC is
the product of measures of the overall precision (how far
each observation deviates from the best fit line) and the
overall accuracy (how far the best-fit line deviates from
the 1:1 line). High values represent better combined accu-
racy and precision.

We used the bootstrap-averaged predictions to calcu-
late expected counts at each survey under the null model
[A = exp(initial intercept estimate of the BRT) X C]  and
the final BRT [A=estimate from all trees combined X C].
These initial and final predictions were used to calculate
the area under the receiver operating characteristic curve
(ROC AUC, Zipkin et al., 2012) to assess classification
accuracy (counts treated as detection/nondetection). We
also calculated the pseudo R? to quantify the proportion
of variance explained using a Poisson density, comparing
deviance relative to the null and saturated models.

We examined factors influencing the predictive ability
of our models by post hoc analyses on AUC statistics
saved from each model. Prior to analysis, we converted
the AUC score for each species nested within each region
to a binary variable indicating whether the AUC was
<0.7 (1) or exceeded 0.7 (0) based on a value of 0.7, as
values above this threshold are generally seen as provid-
ing at least fair predictive ability (Carter et al., 2016).

Within each region, we identified and mapped the pro-
portion of modeled species that did not achieve AUC
>0.7 to interpret cross-species spatial patterns in model
predictive ability. In addition, we modeled the probability
that models did not achieve AUC >0.7 using generalized
linear mixed models, including model region as a random
intercept and habitat affinity (S6lymos et al., 2018) and
species taxonomic families (Jetz et al., 2012) as fixed
effects. We fit seven competing models, including all
combinations of main effects but no interactions, and
selected the most parsimonious model based on corrected
Akaike information criterion for sample size (AIC.). To
determine the habitat guilds and taxonomic groups that
were most likely to not achieve adequate model fit, we
used contrasts against the factor level for which the esti-
mated marginal means suggested the lowest probability
of not achieving the AUC threshold of 0.7.

Variable importance

Variable importance was assessed by summing percent
relative influence values (Friedman & Meulman, 2003)
across species and variables by thematic group and
region. Thematic groups evaluated were climate normals,
land cover, local vegetation, landscape vegetation, topog-
raphy, time (year effect), and survey method (Table 1).

Density and population estimates

We used the resulting BRT models to make species- and
region-specific density predictions to a 1-km” resolution
raster, using recent (2011) vegetation layers. Although
point-count surveys best represent hectare-scale pro-
cesses and patterns, we deemed such a fine resolution
unnecessary for continental-scale predictions, especially
given that many key predictors had a coarser native reso-
lution (up to 1 km?). Thus, we applied a hundredfold
scaling of model predictions with the assumption that
mean densities would be maintained. To achieve this
scaling, continuous inputs were resampled with bilinear
interpolation to take the mean value of pixels for each
variable; categorical inputs were resampled using a
nearest neighbor algorithm. We set the ARU variable to
0, the year variable to 2011, and the road variable
to 0, such that our predictions represented the expected
number of males per ha based on a point count cond-
ucted in 2011 in off-road habitat. That is, we accounted
for roadside bias through the inclusion of the road vari-
able in our models, but we treated every pixel in the pre-
dictive process as nonroad habitat, given the 1-km?
resolution. In this respect, we assumed that road effects
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are primarily a function of detectability. To the extent
that roadside biases reflect real differences in abundance,
our approach may result in a small over- or underestima-
tion of total population sizes.

We generated 32 prediction rasters (1-km?” resolution) for
each species-by-region combination. When the actual boot-
strap sample for a region did not contain any detections of
the species, we predicted zero for that region. For each boot-
strap replicate, we converted predicted density (in number of
males per hectare) to abundance within each 1-km? cell
(using N = 100 x D to scale from hectares to square kilome-
ters) and summed over all cells in each region. Within each
region, we estimated the median density by land-cover class
and estimated lower and upper bounds as the 5th and 95th
percentiles, respectively. Our population estimate for the total
number of males was the median of the bootstrap distribu-
tion, and uncertainty bounds were estimated as the 5th and
95th percentiles. We estimated the total number of breeding
males by species, by region, and for groups of species associ-
ated with the same primary breeding habitat (as defined by
Rosenberg et al., 2019).

Density maps

We developed national density maps for each species
(in number of males per hectare) by mosaicking regional
predictions (including 100-km buffer zones) for each
bootstrap replicate of the full study extent. We used
overlapping buffer zones to create a smooth transition
between the predictions of neighboring regions. This was
done by producing a weighting raster for each region, the
values of which increased as a function of proximity to
the region’s core (pixel weight = distance of focal pixel
to nearest edge/maximum pixel distance to edge; 0-1).
Combined predictions were then produced as the
mosaicked, weighted sum of each regional prediction
divided by the mosaicked sum of each regional weighting
raster. We note that calculating mean density and abun-
dance from these distribution maps leads to slightly dif-
ferent population estimates than those using the
bootstrap-based aggregation approach described above.
In some cases, mosaics of the expected values created
sharp transitions in predicted density across some bound-
aries coinciding with large regional differences in density.
This variation in density across a large study area presented
challenges for mapping, and so we balanced mapping detail
with aesthetics to create smoother transitions across bound-
aries. To make national scale maps, we began by using
expected density within the model-building area as a pres-
ence/absence threshold (Stralberg, Bayne, et al., 2015), with
areas of density below this mean density (“absence”)
represented in light yellow. However, we found that this

approach did not adequately describe the abundance pat-
terns of all species, especially those that are widely distrib-
uted. So we adjusted the minimum thresholds according to
visual alignment with known range limits. If maps based
on these mean density thresholds resulted in a nontrivial
number of occurrence locations mapped as absence, we
sequentially adjusted these thresholds downward until that
was no longer the case (starting with 0.05, then 0.01, then
finally 0.001). Equal-interval legends, capped at the 99th
percentile of predictions, were used to classify remaining
density predictions for mapping. We note that these manip-
ulations altered the appearance of the maps, but did not
change the predicted densities. We emphasize that categori-
cal map legends necessarily introduce subjectivity into the
interpretation of species’ distribution and abundance pat-
terns and note that the legend breaks we used may not be
the best ones for all mapping needs. Maps and model
results are available at https://doi.org/10.5281/zenodo.
14854040 (S6lymos et al., 2025).

RESULTS

We considered 143 species and 16 regions, for a total of
2288 potential species X region combinations. Boosted
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FIGURE 4 Contrast in the odds (mean odds ratio + SE) that
models for the given habitat guild would show poor predictive
ability based on area-under-the-receiver-operating-
characteristic-curve (AUC) values <0.7. Dashed reference line at
unit odds ratio represents no difference in estimated probabilities of
poor model performance, with values >1 indicating a higher
probability of showing poor model performance compared to the
forest-inhabiting reference group.
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regression-tree models were not run for 420 (18%) combi-
nations with no detections. Models could not be fit due to
insufficient data for an additional 291 (13%) combina-
tions of species and regions. Abundance estimates were
assigned 0 values for all 711 (31%) of these combinations.
For the remaining 1577 (69%) species-region models that
were successfully run over 32 bootstrap replicates, species
prevalence rates (proportion of surveys with species detec-
tions) ranged from <0.0001 to 0.37.

Model evaluation

Models varied widely with respect to validation metrics.
Pseudo-R* values ranged from <0 (due in part to influen-
tial density offsets) to 0.810 (median = 0.14). OCCC
values ranged from 0.08 (worst) to 0.996 (best), with a
median of 0.91; and AUC values ranged from 0.43 (worst)
to 0.98 (best) with a median of 0.79 (https://doi.org/10.
5281/zenodo.14854040; Sélymos et al., 2025).

Our most parsimonious model for the probability of
achieving at least fair predictive ability (AUC > 0.7)
included migratory guild, habitat guild, and taxonomic
family. Neotropical migrants were the migratory guild
least likely to have poor predictive ability (estimated mar-
ginal mean [hereafter EMM] = 0.30, SE = 0.06), followed
by residents (EMM = 0.34, SE = 0.09), short-distance
migrants (EMM = 0.46, SE = 0.06) and nomadic species
(EMM = 0.58, SE = 0.11). Predictive ability did not differ
between residents and neotropical migrants (odds = 1.18,
SE =0.54). In contrast, nomadic species were 3.2
(SE = 1.4) and short-distance migrants were 1.9 times
(SE = 0.4) more likely than neotropical migrants to have
poor predictive ability. Forest-dwelling species were the
least likely to have poor predictive ability (EMM = 0.19,
SE = 0.03) and most habitat guilds did not differ substan-
tially from forest birds (Figure 4). Three habitat guilds
that were more likely to have poor predictive ability than
forest birds were species inhabiting lakes/ponds, which
were 4.1 times (SE = 2.9) more likely to have poor
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FIGURE 5

Contrast in the odds (mean odds ratio + SE) that models for the given taxonomic group would show poor predictive ability

based on area under the receiver operating characteristic curve (AUC) values <0.7. Dashed reference line at unit odds ratio represents no
difference in estimated probabilities of poor model performance, with values >1 indicating a higher probability of showing poor model
performance compared to the Regulidae (kinglets) reference taxonomic group.
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predictive ability; species inhabiting towns, which were
10.9 times (SE = 7.8) more likely; and species inhabiting
mountains, which were 27.7 times (SE = 20.2) more
likely to have models with poor predictive ability com-
pared to forest birds. Taxonomically, species in the kinglet
family (Regulidae) were the least likely to have models
with poor predictive accuracy (EMM = 0.13, SE = 0.09).
Model performance differed among taxonomic groups
(Figure 5). In particular, waxwings (Bombycillidae) were
26.3 (SE = 23.4) times, tits (Paridae) were 24.3 (SE = 22.4)
times, and finches (Fringillidae) were 10.3 (SE = 8.3)
times more likely than the kinglets to have models with
poor predictive performances based on AUC. Overall, poor
model fit tended to be most prevalent in species and region
combinations in the northwestern and northeastern
extremes of the study area (Figure 6).

Variable importance

Across species and regions, landscape-level (up to
~1.5 km) vegetation metrics comprised the most influen-
tial set of predictors, followed by either local vegetation
(250 m) or climate normals (1 km), depending on the
region (Figure 7; https://doi.org/10.5281/zenodo0.14854040;

Sélymos et al., 2025). Land cover, topography, time, and
survey method, in that order, were consistently the next
most influential groups of predictors across regions. The
influence of landscape-level vegetation metrics was
highest relative to the influence of climate variables in
region 12 (Boreal Hardwood Transition, Figure 7). The
influence of climate variables was highest relative to
landscape-level vegetation metrics in region 7-0 (Taiga
Shield and Hudson Plains, West). Compared to other
regions, land cover had the largest relative influence in
region 5 (Northern Pacific Rainforest). Survey method
had low relative importance across regions, but had
non-negligible importance in the regions for which ARU
data were used (regions 6-0, 8-0, and 8-1).

In terms of individual variables, the most important
variable overall was survey year, followed by average
summer and winter temperature, respectively. Least
important overall was the binary road variable.

Population estimates

Population estimates for all of subarctic Canada indicated
that the 10 most abundant species made up 35.6% of the
total landbird population, and were, in descending order,

Proportion of Species

0.1to<0.2
0.2 to <0.3
0.3to<0.4
B 0.4t0<05

FIGURE 6 Proportion of modeled species with poor model fit (area under the receiver operating characteristic curve [AUC] < 0.7) by

model region (gray lines, see also Figure 1).
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FIGURE 7 Relative importance of variable classes for explaining variation in 143 landbird densities in 16 regions, and all of Canada,

from boosted regression tree models. See Table 1 for specific variables included in each group.

Yellow-rumped Warbler (Setophaga coronata), Dark-eyed
Junco (Junco hyemalis), American Robin (Turdus
migratorius), White-throated Sparrow (Zonotrichia albicollis),
Swainson’s Thrush (Catharus ustulatus), Tennessee Warbler
(Leiothlypis  peregrina), Pine Siskin (Spinus pinus),
Ruby-crowned Kinglet (Regulus calendula), Chipping
Sparrow (Spizella passerina), and Magnolia Warbler
(Setophaga magnolia) (Table 2). The Yellow-rumped Warbler
population was estimated at 203 million breeding males
(5.7% of total landbird population), based on the mean of
the bootstrap distribution (5th percentile = 199 million,
95th percentile = 209 million) (Table 2; https://doi.org/10.
5281/zenodo.14854040; Soélymos et al., 2025). The total
number of breeding males, across 143 species, was esti-
mated at 3.56 billion (3.42 lower bound, 3.76 upper
bound). Applying a simple pair adjustment of two would
result in an estimate of 7.13 billion landbirds (6.84 lower
bound, 7.51 upper bound). There is some potential for
estimation bias due to our setting of the road variable to
0 for prediction. However, given the very low influence
of this coarse-resolution variable, the effect does not
appear to be meaningful.

Most landbirds (2.29 billion breeding males or 64%)
were estimated to occur in the Boreal region, 1.01 billion

breeding males in the Western Boreal region, and 1.28
billion in the Eastern Boreal and Hemiboreal regions
(Figure 8). Densities in these regions were generally low,
however (Figure 9). Combined densities across species
were highest in the Atlantic and Great Lakes regions
(Figure 9), which were estimated to contain 5% (174
million) and 3% (92 million), respectively, of the total
estimated population of breeding males (Figure 8).

With respect to breeding habitat groups, forest gen-
eralists (1.57 billion breeding males) and boreal
forest-associated species (1.05 billion males) had the
highest predicted population sizes (Figure 8). Our pre-
dictions for the remaining habitat categories were
350 million habitat generalists, 274 million eastern
forest-associated, 124 million grassland-associated,
74.7 million western forest-associated, 63.5 million
wetland-associated, 48.9 million introduced, and 17.7
million Arctic tundra-associated breeding males.

Density maps

Density estimates (in number of males per hectare) often
varied widely across regions and land-cover types within
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TABLE 2 Estimated Canada-wide abundance (million TABLE 2 (Continued)
breeding males) for all species. Abundance
Abundance Common name (scientific name) (M males)
Common name (scientific name) (M males)

Yellow-rumped Warbler (Setophaga
coronata)

Dark-eyed Junco (Junco hyemalis)
American Robin (Turdus migratorius)

White-throated Sparrow (Zonotrichia
albicollis)

Swainson’s Thrush (Catharus ustulatus)

Tennessee Warbler (Oreothlypis
peregrina)

Pine Siskin (Spinus pinus)

Ruby-crowned Kinglet (Regulus
calendula)

Chipping Sparrow (Spizella passerina)

Magnolia Warbler (Setophaga
magnolia)

Golden-crowned Kinglet (Regulus
satrapa)

Cedar Waxwing (Bombycilla cedrorum)
Red-eyed Vireo (Vireo olivaceus)

Gray Jay (Perisoreus canadensis)
Yellow Warbler (Setophaga petechia)
Alder Flycatcher (Empidonax alnorum)
Lincoln’s Sparrow (Melospiza lincolnii)

Red-winged Blackbird (Agelaius
phoeniceus)

Wilson’s Warbler (Cardellina pusilla)
American Redstart (Setophaga ruticilla)

Orange-crowned Warbler (Oreothlypis
celata)

Hermit Thrush (Catharus guttatus)

Savannah Sparrow (Passerculus
sandwichensis)

Least Flycatcher (Empidonax minimus)
American Goldfinch (Spinus tristis)

Nashville Warbler (Oreothlypis
ruficapilla)

Blackpoll Warbler (Setophaga striata)

Black-capped Chickadee (Poecile
atricapillus)

Brown-headed Cowbird (Molothrus
ater)

Warbling Vireo (Vireo gilvus)

Ovenbird (Seiurus aurocapilla)

203.2 (199.2, 209.4)

151.1 (147.9, 155.3)
136.6 (134.8, 139.3)
128.1 (125.4, 130.4)

122.4 (120.4, 124.2)
115 (113, 117.6)

114 (109.6, 120.5)
113.1 (110.2, 116.4)

108.5 (105.4, 110.4)
78.05 (76.28, 80.2)

77.92 (75.47, 80.04)

69.59 (67.17, 72.25)
68.52 (67.58, 69.85)
62.48 (58.57, 66.07)
62.44 (60.72, 65)
60.73 (59.22, 62.51)
58.66 (55.72, 60.7)
54.2 (53.32, 55.65)

53.56 (52.08, 56.52)
52.01 (50.46, 53.5)
51.6 (50.2, 54.1)

51.23 (50.2, 53.15)
46.27 (4.2, 48.63)

45.93 (44.65, 47.04)
45.76 (44.84, 46.83)
45.21 (44.04, 46.62)

42.87 (40.92, 47.28)
41.21 (40.29, 42.21)

40.78 (39.87, 41.87)

39.14 (38.43, 39.95)

38.82 (37.97, 39.59)
(Continues)

Common Yellowthroat (Geothlypis
trichas)

Song Sparrow (Melospiza melodia)

White-winged Crossbill (Loxia
leucoptera)

Boreal Chickadee (Poecile hudsonicus)
Clay-colored Sparrow (Spizella pallida)
Eastern Bluebird (Sialia sialis)

Yellow-bellied Flycatcher (Empidonax
flaviventris)

Northern Waterthrush (Parkesia
noveboracensis)

Red-breasted Nuthatch (Sitta
canadensis)

Palm Warbler (Setophaga palmarum)

White-crowned Sparrow (Zonotrichia
leucophrys)

Fox Sparrow (Passerella iliaca)

Red-breasted Nuthatch (Sitta
canadensis)

European Starling (Sturnus vulgaris)

Black-and-white Warbler (Mniotilta
varia)

Brewer’s Blackbird (Euphagus
cyanocephalus)

Bay-breasted Warbler (Setophaga
castanea)

Common Grackle (Quiscalus quiscula)
Swamp Sparrow (Melospiza georgiana)
Northern Flicker (Colaptes auratus)
Barn Swallow (Hirundo rustica)

Bohemian Waxwing (Bombycilla
garrulus)

Townsend’s Warbler (Setophaga
townsendi)

Blue-headed Vireo (Vireo solitarius)
House Sparrow (Passer domesticus)
Red Crossbill (Loxia curvirostra)

Winter Wren (Troglodytes hiemalis)

Chestnut-sided Warbler (Setophaga
pensylvanica)

Cliff Swallow (Petrochelidon
pyrrhonota)

Yellow-bellied Sapsucker (Sphyrapicus
varius)

38.44 (37.54, 39.58)

38.3 (37.74, 38.81)
37.5 (31.89, 43.15)

36.87 (33.82, 39.52)
34.37 (33.56, 35.03)
31.83 (24.25, 69.3)

30.31 (28.63, 32.19)

29.06 (27.79, 29.78)

28.54 (27.75, 29.31)

27.71 (25.14, 28.95)
27.35 (25.48, 29.22)

27.06 (25.6, 28.09)
28.54 (27.75, 29.31)

25.64 (24.03, 27.03)
25.08 (24.19, 26.14)

23.11 (22.08, 24.25)

23.05 (21.32, 23.88)

23.02 (21.84, 23.72)
22.81 (22.09, 24.31)
20.94 (19.97, 21.52)
20.41 (19.57, 21.29)
19.96 (14.6, 31.45)

19.3 (18.01, 20.01)

18.98 (18.04, 19.63)
18.16 (17.29, 19.15)
18.14 (16.23, 20.68)
17.82 (16.9, 18.73)

17.18 (16.75, 17.56)

16.64 (12.88, 21.13)

16.58 (16.04, 17.12)

(Continues)
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TABLE 2 (Continued) TABLE 2 (Continued)

Common name (scientific name)
Wilson’s Snipe (Gallinago delicata)

Mourning Warbler (Geothlypis
philadelphia)

Tree Swallow (Tachycineta bicolor)

Hammond’s Flycatcher (Empidonax
hammondii)

Common Raven (Corvus corax)
Bobolink (Dolichonyx oryzivorus)

Black-throated Green Warbler
(Setophaga virens)

American Crow (Corvus
brachyrhynchos)

Philadelphia Vireo (Vireo
philadelphicus)

Cape May Warbler (Setophaga tigrina)
Blackburnian Warbler (Setophaga
fusca)

Veery (Catharus fuscescens)

Hairy Woodpecker (Picoides villosus)
Western Tanager (Piranga ludoviciana)
Brown Creeper (Certhia americana)
Mourning Dove (Zenaida macroura)
Varied Thrush (Ixoreus naevius)

Blue Jay (Cyanocitta cristata)

Ruby-throated Hummingbird
(Archilochus colubris)

American Tree Sparrow (Spizella
arborea)

Horned Lark (Eremophila alpestris)
Vesper Sparrow (Pooecetes gramineus)
House Wren (Troglodytes aedon)

Rose-breasted Grosbeak (Pheucticus
ludovicianus)

Dusky Flycatcher (Empidonax
oberholseri)

Mountain Bluebird (Sialia currucoides)
Purple Finch (Carpodacus purpureus)
Killdeer (Charadrius vociferus)

Black-throated Blue Warbler
(Setophaga caerulescens)

Lapland Longspur (Calcarius
lapponicus)

Downy Woodpecker (Picoides
pubescens)

Rusty Blackbird (Euphagus carolinus)

Abundance
(M males)

16.12 (15.14, 16.61)
15.95 (15.23, 16.48)

15.85 (15.02, 16.44)
15.82 (15.12, 16.65)

15.13 (14.33, 15.53)
14.48 (13.83, 15.2)
14.18 (13.55, 14.54)

14.02 (13.8, 14.37)

13.46 (12.78, 14.21)

11.9 (10.93, 13.47)
11.75 (11.47, 12.33)

10.68 (10.33, 10.93)

10.54 (9.97, 11.15)

10.53 (10.16, 10.94)
9.87 (8.76, 10.96)
9.42(9.17, 9.6)
9.22 (8.79, 9.49)
9.21 (9.02, 9.33)
8.91 (8.34, 10.02)

8.4 (6.89, 9.52)

8.21 (6.97, 9.11)
7.77 (7.59, 7.83)
7.74 (7.57, 7.9)

7.61(7.32, 7.81)

7.24 (6.89, 7.54)

6.83 (6.41, 7.31)
6.77 (6.14, 7.15)
6.42 (6.13, 6.66)
6.14 (5.94, 6.4)

6.1 (4.9, 7.28)

6.1 (5.84, 6.51)

6.06 (4.65, 7.46)
(Continues)

Common name (scientific name)

Gray-cheeked Thrush (Catharus
minimus)

Yellow-headed Blackbird
(Xanthocephalus xanthocephalus)

Northern Parula (Setophaga americana)
Rock Pigeon (Columba livia)
Eastern Kingbird (Tyrannus tyrannus)

Olive-sided Flycatcher (Contopus
coopert)

Gray Catbird (Dumetella carolinensis)

Canada Warbler (Cardellina
canadensis)

Le Conte’s Sparrow (Ammodramus
leconteii)

Evening Grosbeak (Coccothraustes
vespertinus)

Spotted Sandpiper (Actitis macularius)
Baltimore Oriole (Icterus galbula)
Pine Grosbeak (Pinicola enucleator)
Ruffed Grouse (Bonasa umbellus)

Greater Yellowlegs (Tringa
melanoleuca)

Bank Swallow (Riparia riparia)
Lesser Yellowlegs (Tringa flavipes)
Belted Kingfisher (Megaceryle alcyon)

Western Wood-Pewee (Contopus
sordidulus)

Solitary Sandpiper (Tringa solitaria)
Eastern Phoebe (Sayornis phoebe)

Black-backed Woodpecker (Picoides
arcticus)

Connecticut Warbler (Oporornis agilis)

Pileated Woodpecker (Dryocopus
pileatus)

Townsend’s Solitaire (Myadestes
townsendi)

Black-billed Magpie (Pica hudsonia)

Great Crested Flycatcher (Myiarchus
crinitus)

White-breasted Nuthatch (Sitta
carolinensis)

American Three-toed Woodpecker
(Picoides dorsalis)

Willow Ptarmigan (Lagopus lagopus)

Abundance
(M males)

6.01 (5.1, 6.79)

6 (5.47, 6.41)

5.88 (5.72, 6.09)
5.76 (5.38, 6.08)
5.53 (5.34, 5.82)
5.25 (4.89, 5.55)

5.19 (4.98, 5.4)
4.67 (4.41, 5)

4.51 (4.28, 4.84)

4.29 (4.05, 4.6)

3.89 (3.42, 4.38)
3.87 (3.77, 4)

3.82(2.97, 5.68)
3.75 (3.56, 4.01)
3.56 (3.13, 4.13)

3.55(2.96, 4.4)

3.22(2.95, 3.57)
3.01(2.69, 3.42)
2.99 (2.73, 3.34)

2.85(2.23, 3.5)
2.79 (2.66, 2.98)
2.59 (2.33, 2.99)

2.4(2.3,2.58)
2.37(2.29, 2.48)

2.3 (2.04, 2.58)

2.16 (2.07, 2.21)
1.97 (1.87, 2.05)

1.95 (1.88, 2.07)

1.7 (1.52, 2.08)

1.49 (1.06, 1.84)

(Continues)
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TABLE 2 (Continued)

Common name (scientific name)

Golden-crowned Sparrow (Zonotrichia
atricapilla)

Sedge Wren (Cistothorus platensis)
Marsh Wren (Cistothorus palustris)
Indigo Bunting (Passerina cyanea)
Eastern Wood-Pewee (Contopus virens)
Brown Thrasher (Toxostoma rufum)
Scarlet Tanager (Piranga olivacea)

Nelson’s Sparrow (Ammodramus
nelsoni)

Pine Warbler (Setophaga pinus)

Upland Sandpiper (Bartramia
longicauda)

Northern Cardinal (Cardinalis
cardinalis)

Wood Thrush (Hylocichla mustelina)
American Pipit (Anthus rubescens)
Sooty Grouse (Dendragapus fuliginosus)

Grasshopper Sparrow (Ammodramus

Abundance
(M males)

1.49 (0.88, 2.46)

1.48 (1.35, 1.59)
1.4 (1.26, 1.56)
1.27 (1.21,1.33)
1.16 (1.1, 1.23)
0.679 (0.646, 0.713)
0.667 (0.627, 0.709)
0.586 (0.439, 0.768)

0.56 (0.531, 0.605)
0.538 (0.509, 0.583)

0.532 (0.514, 0.553)

0.51 (0.487, 0.53)
0.347 (0.123, 0.606)
0.316 (0.263, 0.353)
0.299 (0.252, 0.349)

savannarum)
Yellow-throated Vireo (Vireo flavifrons) 0.297 (0.219, 0.4)

Eastern Towhee (Pipilo 0.249 (0.224, 0.284)

erythrophthalmus)
0.208 (0.194, 0.224)
0.133 (0.107, 0.163)

Field Sparrow (Spizella pusilla)

Golden-winged Warbler (Vermivora
chrysoptera)

Blue-gray Gnatcatcher (Polioptila 0.032 (0.023, 0.045)

caerulea)

Note: Values in parentheses are the 5th and 95th percentile of the bootstrap
distribution.

a given species range (https://doi.org/10.5281/zenodo.
14854040; Sélymos et al., 2025). For two example species,
Canada Warbler (Cardellina canadensis, Figure 10) and
Connecticut Warbler (Oporornis agilis, Figure 11), both
of which have experienced recent population declines
(Rosenberg et al., 2019), density patterns varied across
the Canadian portions of their breeding ranges. In the
Boreal Plains (6-0) region, Canada Warbler median
predicted densities were 0.0182 and 0.0089 males/ha in
deciduous and conifer land-cover types, respectively.
In the Boreal Hardwood Transition (12) region, median
predicted densities were similar to those for region 6-0 in
deciduous land-cover types (0.026 pairs/ha), but over
twice as high in conifer land-cover types (0.024 males/ha).
The Connecticut Warbler had higher median predicted
densities in the west compared to the east in all land-cover

types. Very few Connecticut Warbler were predicted in the
Boreal Hardwood Transition region (12), with median
densities of 0.0019 males/ha in deciduous land-cover
types and 0.0021 males/ha in conifer land-cover types.
In the Boreal Plains region (6-0), density predictions
for Connecticut Warbler were nearly 10 times higher:
0.0166 males/ha in deciduous and 0.0145 males/ha in
conifer land-cover types. Densities were somewhat
lower in the Boreal Softwood Shield region of Ontario
(8-1): 0.0087 males/ha in deciduous and 0.0096 males/
ha in conifer land-cover types.

Population summaries, maps, variable importance,
and validation metrics for all species are available
for download at https://doi.org/10.5281/zenodo.14854040
(Sélymos et al., 2025). Additional variable importance
details for example species and regions, including the
top 20 variables (Appendix S2: Tables S1-S4), partial
dependence plots (Appendix S2: Figures S1-S4) and
two-way covariate interaction strengths (Appendix S2:
Tables S5-S8) can be found in Appendix S2.

DISCUSSION

Here we have demonstrated the application of a compre-
hensive framework for developing fine-grained, spatially
explicit population estimates for terrestrial bird species
over large extents. Our framework integrates an approach
for harmonizing data from across different surveys; a
process for converting raw counts collected using non-
standardized methods to generate standardized density
estimates; and the development of systematic, hierarchi-
cally structured models that can account for many com-
plex factors affecting species distributions. On average,
these models estimated a total of approximately 7.13 bil-
lion breeding landbirds (3.56 billion breeding males)
representing 143 species across subarctic Canada, with
most individuals breeding within boreal and hemi-boreal
regions. Given Canada’s forest-dominated land base, for-
est generalist species made up the largest part of this total
estimate, followed by boreal forest specialist species.
Although included here when available, grassland-
specific surveys were not targeted in the data compila-
tion process, and thus population estimates of
grassland-associated species are likely better quantified
by grassland-targeted studies (Prairie Habitat Joint
Venture, 2021). By standardizing and combining many
individual studies to fill the gaps remaining from larger
coordinated survey programs, we provide scalable and
spatially explicit landbird population estimates at an
extent and resolution not previously available. With
new avian data and improved covariate data, our mod-
ular framework may be easily updated to yield
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FIGURE 8 (A)Summary of Canada-wide and regional population estimates for species groups based on primary breeding habitat
(as defined by Rosenberg et al., 2019). Pie chart radii are scaled based on a region’s proportion of the total population. (B) Estimated
abundance by geographic zone. Error bars show the 5th and 95th percentiles of the bootstrap distribution.

population and density estimates of increasing accu-
racy and precision. It also has the potential to be
adapted to other taxa in other regions, thus laying the
foundation to advance decision making and action at
regional, national, and continental scales.

We applied a national-scale, ad hoc point-count data-
base, which offers a unique integration of structured and
semistructured data (sensu La Sorte et al., 2018), to the
problem of generating spatially explicit population

estimates for subarctic Canada. Previous efforts to esti-
mate North American bird populations at large extents,
such as those relying heavily on BBS data, are compli-
cated by issues of roadside survey bias, lack of adequate
habitat representation, and species detectability assump-
tions (Solymos et al., 2020; Thogmartin et al., 2006).
Although the Boreal Avian Modeling Project database that
we used still has gaps in habitat representation, particu-
larly in northern areas (Van Wilgenburg et al., 2020), the
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FIGURE 9 Predicted avian density (in number of males per hectare) for subarctic Canada summed over 143 species.

inclusion of large numbers of off-road surveys significantly
reduces the roadside bias and habitat representation issues
plaguing other databases (S6lymos et al., 2020). Moreover,
even in areas with high BBS route coverage, populations
have thus far been estimated over broad geographic
regions (Partners in Flight, 2020; Stanton et al., 2019).
In contrast, our predictive modeling framework allows
for spatially explicit estimates at a much higher spatial
resolution, thus facilitating greater precision in regi-
onal conservation planning (Leston et al., 2024).
Future model iterations (in progress) will incorporate
data from neighboring (United States) jurisdictions to
improve cross-border coordination of conservation and
management activities.

The ability to harmonize species abundance data col-
lected with different sampling protocols and detectability—
albeit with the same general survey method (i.e., point
counts) and parameters—was a key factor in translating
a heterogeneous database into population estimates. This
standardization was enabled by the QPAD method,
which considers the probability of detection (q) and avail-
ability (p) of birds in relation to area (a) and density (d)
(Sélymos et al., 2013). Although we used custom offsets
developed from a subset of our dataset, general offsets

have been developed for a large number of North
American landbird species and are available to be applied
to density models for additional species over larger areas
(NA-POPS initiative, Edwards et al., 2023). With the
QPAD method, relative abundance estimates are most
sensitive to the representativeness of habitat strata, while
absolute numbers are most sensitive to estimates of
detection distances (Sélymos et al., 2020). Therefore, as
the latter is an active area of bioacoustic research, total
population numbers may be revised as bioacoustic
methods and recording equipment improve. As well,
relative abundance estimates may become more precise
as new data collection improves coverage of covariate
space, particularly given new efforts to collect data in
known data gaps using stratified sampling with hierar-
chically structured surveys (Pavlacky et al., 2017; Van
Wilgenburg et al., 2020). Incorporation of data from
randomized sampling will also allow formal assessment
of the risk of bias in species distribution models created
with data derived largely from nonprobability-based sam-
pling (Boyd et al., 2023).

Our machine learning approach to model-building,
and the large number of covariates considered, allowed
us to account for variable interactions and nonlinearities
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FIGURE 10 Example of species’ density (in number of males per hectare) maps and habitat-specific density estimates for Canada and
two regions for Canada Warbler (Cardellina canadensis). Model regions and NatureServe species’ ranges are outlined in red and dark blue,

respectively.

in an automated fashion over large areas, thereby
representing the complexity of species abundance pat-
terns better than simpler linear models. When looking
across the entirety of Canada, environmental gradients
are much more evident in climate variables than in
vegetation patterns, despite clear climatic controls on
individual plant species (McKenney et al., 2007).
Consequently, avian SDMs fit at the national scale
have generally been dominated by climate variables,
some combination of which readily explains gradients
in species distribution, whether those influences are
direct or indirect (Cumming et al.,, 2014; Stralberg,
Matsuoka, et al., 2015). By partitioning models into
ecoregional units with relatively homogeneous climate

regimes, we aimed to remove the influence of conti-
nental scale climatic gradients and emphasize local
and landscape-level predictors such as vegetation, land
cover, and topography. Although climate variables
were still important predictors of abundance for most
species, most of the explainable variation in bird den-
sity was attributed to vegetation characteristics, in par-
ticular landscape-level proportions of individual tree
species and forest structural characteristics, as mapped
by Beaudoin et al. (2014). This represents a refinement
in comparison with purely bioclimatic models, espe-
cially in human-modified landscapes with vegetation
patterns that are decoupled from climate drivers.
However, the combined influence of climate and
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Example of species’ density (in number of males per hectare) map and habitat-specific density estimates for Canada and

two regions for Connecticut Warbler (Oporornis agilis). Model regions and NatureServe species’ ranges are outlined in red and dark blue,

respectively.

landscape-level vegetation variables in our models
resulted in spatial predictions that were generally
driven by broad physical gradients more than local
habitat heterogeneity. A large portion of the variance
remained unexplained, indicating that unmapped habi-
tat conditions, as well as population and community
dynamics, may also play an important role.

The dominance of these broad-scale gradients in our
predicted density maps is partly due to the ecoregional
scale at which these models were constructed, as well as
population and community dynamics that result in
unsaturated habitats, reducing our ability to explain local
patterns. As spatio-temporal accuracy and precision of
remotely sensed predictors improve, the influence

of local habitat variation in the models should increase,
improving their value for local and regional management
purposes. However, in areas with good avian data cover-
age, the full influence of local habitat variability may be
better captured by developing regionally specific models
incorporating additional hierarchical structure and popu-
lation dynamics.

Model performance and biases
We leveraged spatially extensive datasets, covariates, and

a generalized modeling framework to reduce the risk of
model bias (Boyd et al.,, 2023; Fourcade et al., 2018).
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Although our models generally performed well, post hoc
analyses suggested that they experienced a few biases related
to geography, habitat affinity, and taxonomy. This result sup-
ports recent work by Morelli et al. (2024), who found that
model performance was better for specialist species than gen-
eralist species. Thus, applying metrics of niche specialization
might be a fruitful future refinement. Historic underrepre-
sentation of sampling in the far north, mountains, and lake-
shores likely contributed to reduced model performance in
those areas. Ongoing efforts to employ spatially balanced
sampling across the boreal forest biome of Canada using
a hierarchically stratified sampling design (Van
Wilgenburg et al.,, 2020) should improve the perfor-
mance of future models. Some of the taxonomic groups
that were more likely to show poor model performance
(waxwings and finches) have generally been less well
surveyed using point count methods due to their
nomadic habits and poor timing of surveys. The inclu-
sion of data from ARUs and/or carefully standardized
checklist data (Robinson et al., 2020) could improve
the predictive ability of future models.

Conservation applications

The framework presented here represents a model-based
approach to improving continental-scale estimates of
population size and distribution, which is fundamental to
conservation and management. This type of information
is required to evaluate species’ status (e.g., Species
At Risk Act, Government of Canada, 2019), identify stew-
ardship and management responsibilities under the
Migratory Birds Convention Act (Government of
Canada, 1994), and prioritize conservation resources
(Stralberg et al., 2018; Veloz et al., 2015). By improving
our understanding of spatial population patterns, we
can better quantify losses, gains, and distributional
shifts in bird populations, ultimately facilitating more
targeted conservation measures.

The documentation of avian population declines by
Rosenberg et al. (2019) was enabled by continental-scale
population estimates that can be refined with model-
based approaches such as those presented herein. As it
incorporates temporally varying model covariates, as well
as a year term, our modeling approach can ultimately be
used to move beyond current snapshots and refine esti-
mates of population changes over time based on changes
in habitat. This version of our models was limited by the
availability of temporally specific spatial data on forest
composition and structure (2001 and 2011; Beaudoin
et al., 2014). We also limited our covariate selection to
mostly static or long-term (i.e., climate-normal) variables.
However, future model iterations, fueled by rapidly

increasing volumes of remotely sensed land-cover data
(e.g., Guindon et al., 2024; Hermosilla et al., 2022) and
processing capacity (Campos et al., 2023; Crego et al., 2022),
can incorporate a broader range of annual vegetation, dis-
turbance, and climate indices. The resulting spatially
refined population trends—which may be partitioned into
habitat-driven versus unexplained trends—can be used to
inform species status assessments on a more frequent basis
as climate and vegetation change continue to alter Canada’s
forest landscapes and bird habitats. The easily updatable
framework presented here makes such frequent assess-
ments possible.

Although spatially explicit population trends require
more focused attention (e.g., Ball et al., 2016), current esti-
mates of species population size and distribution are rela-
tively easy to produce and update as new data become
available. Our modular, ecosystem-based approach is flexi-
ble enough to accommodate the incorporation of regional
mapping products that may better capture important habi-
tat differences than national and continental-scale prod-
ucts. Because national estimates are based on combined
bootstrapped mean projections for separate regions, indi-
vidual regional models can be updated independently and
with distinct individual variables.

CONCLUSION

Given human pressures on biodiversity and ongoing species
declines (Robbins et al., 1989; Rosenberg et al., 2019), the
optimization of conservation and land management out-
comes for biodiversity is increasingly important. Spatially
explicit density estimates, as we have presented here, pro-
vide opportunities to make conservation investments and
management actions more efficient. We have integrated a
wide range of remotely sensed spatial datasets and survey
methods, leveraging those important individual contribu-
tions to provide the best possible species-specific abundance
estimates at a range of spatial scales relevant to conservation
planning and land management. In doing so, we developed
an open, modular, and reproducible approach to allow for
regular updates to models and data products (available at
https://github.com/borealbirds/LandbirdModelsV5; Sélymos
et al., 2025). Although population and density estimates will
continue to improve, current and future iterations of the
models presented here constitute a significant improvement
over aggregated regional estimates and an asset to conserva-
tion decision-making.
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